

Unit – V

Structures, Unions, Bit Fields: Introduction, Nested Structures, Arrays of Structures,

Structures and Functions, Self-Referential Structures, Unions, Enumerated Data Type –

enum variables, Using Typedef keyword, Bit Fields. Data Files: Introduction to Files,

Using Files in C, Reading from Text Files, Writing to Text Files, Random File Access.

Structure

A structure is a user defined data type. We know that arrays can be used to represent a

group of data items that belong to the same type, such as int or float. However we cannot use an

array if we want to represent a collection of data items of different types using a single name. A

structure is a convenient tool for handling a group of logically related data items.

Structure is a user defined data type used to represent a group of data items of different

types using a single name.

The syntax of structure declaration

is struct structure_name

{

type element 1;

type element 2;

……………..

type element n;

};

In structure declaration the keyword struct appears first, this followed by structure name.

The member of structure should be enclosed between a pair of braces and it defines one by one

each ending with a semicolon. It can also be array of structure. There is an enclosing brace at the

end of declaration and it end with a semicolon.

We can declare structure variables as follows

struct structure_name var1,var2,…..,var n;

Example:

To store the names, roll number and total mark of a student you can declare 3 variables.

To store this data for more than one student 3 separate arrays may be declared. Another choice is

to make a structure. No memory is allocated when a structure is declared. It just defines the “form”

of the structure. When a variable is made then memory is allocated. This is equivalent to saying

that there's no memory for “int”, but when we declare an integer that is int var; only then memory

is allocated. The structure for the above- mentioned case will look like

struct student

{

int rollno;

char name[25];

float totalmark;

};

We can now declare structure variables stud1, stud2 as follows

struct student stud1,stud2;

Thus, the stud1 and stud2 are structure variables of type student. The above structure

can hold information of 2 students.

It is possible to combine the declaration of structure combination with that of the

structure variables, as shown below.

struct structure_name

{

type element 1;

type element 2;

……………..

type element n;

} var1,var2,…,varn;

The following single declaration is equivalent to the two declaration presented in the

previous example.

struct student

{

int rollno;

char name[25];

float totalmark;

} stud1, stud2;

Accessing structure Variable

The different variable types stored in a structure are called its members. The structure

member can be accessed by using a dot (.) operator, so the dot operator is known as structure

member operator.

Example:

In the above example stud1 is a structure variable of type student. To access the member

name, we would write stud1.name. Similarly, stud1’s rollno and stud1’s totalmark can be

accessed by writing stud1.rollno and stud1.totalmark respectively.

Initializing Structure Members

Structure members can be initialized at declaration. This much the same manner as the

element of an array; the initial value must appear in the order in which they will be assigned to

their corresponding structure members, enclosed in braces and separated by commas.

The general form is

struct structure_name var={val1,val2,val3…..};

Example:

#include <stdio.h>

#include<conio.h>

void main()

{

struct student

{

char *name;

int rollno;

float totalmark;

};

struct student stud1={"Venkat",1,98};

struct student stud3= {"Shweta",3,97};

struct student stud2={"Arpita",2,99};

clrscr();

printf(“STUDENTS DETAILS:\n”);

printf(“\n\n Roll number:%d\n Name:%s\n Total Marks:%f”, stud1.rollno, stud1.name,

stud1.totalmark);

printf(“\n\n Roll number:%d\n Name:%s\n Total Marks:%f”, stud2.rollno, stud2.name,

stud2.totalmark);

printf(“\n\n Roll number:%d\n Name:%s\n Total Marks:%f”, stud3.rollno, stud3.name,

stud3.totalmark);

getch();

}

Output

STUDENTS DETAILS:

Roll number: 1

Name: Venkat

Total Marks:98.000000

Roll number: 2

Name: Arpita

Total Marks:99.000000

Roll number: 2

Name:Shweta

Total Marks:99.000000

Array of structures:

It is possible to store a structure has an array element. i.e., an array in which each element

is a structure. Just as arrays of any basic type of variable are allowed, so are arrays of a given type

of structure. Although a structure contains many different types, the compiler never gets to know

this information because it is hidden away inside a sealed structure capsule, so it can believe that

all the elements in the array have the same type, even though that type is itself made up of lots of

different types.

The declaration statement is given below.

struct struct_name

{

type element 1;

type element 2;

……………..

type element n;

}array name[size];

Example:

struct student

{

int rollno;

char name[25];

float totalmark;

} stud[100];

In this declaration stud is a 100-element array of structures. Hence, each element of stud

is a separate structure of type student. An array of structure can be assigned initial values just as

any other array. So the above structure can hold information of 100 students.

Program to demonstrate use of array of structure

#include <stdio.h>

#include <conio.h>

void main()

{

struct student

{

int rollno;

char name[25];

int totalmark;

}stud[100];

int n,i;

clrscr();

printf("Enter total number of students\n\n");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter details of %d-th student\n",i+1);

printf("Name:\n");

scanf("%s",&stud[i].name);

printf("Roll number:\n");

scanf("%d",&stud[i].rollno);

printf("Total mark:\n");

scanf("%d",&stud[i].totalmark);

}

printf("STUDENTS DETAILS:\n");

for(i=0;i<n;i++)

{

printf("\nRoll number:%d\n",stud[i].rollno);

printf("Name:%s\n",stud[i].name);

printf("Total mark:%d\n",stud[i].totalmark);

}

getch();

}

Roll number:13

Name: SANA

OUTPUT

Enter total number of students:
3

Enter details of 1-th student

Name:SUBAHAS

Roll number:11

Total mark:589

Enter details of 2-th student

Name:RUKSANA

Roll number:12

Total mark:594

Enter details of 3-th student

Name:SANA

Roll number:13
Total mark:595

Total mark:595

Structure as structure member (Embedded structure):

A structure inside another structure is called an embedded structure. A structure can

have one or more of its member as another structure, but a structure cannot be member to itself

when a structure is used as structure member. In such situation, the

declaration of the embedded structure must appear before the declaration of the outer

structure. For example

#include <stdio.h>

#include <conio.h>

void main()

{

struct dob

{

int day;

int month;

int year;

};

struct student

{

struct dob d;

int rollno;

char name[25];

int totalmark;

}stud[25];

int n,i;

clrscr();

printf("Enter total number of students");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("\n\nEnter details of %d student",i+1);

printf("\nName:");

scanf("%s",&stud[i].name);

printf("\nRoll number:");

scanf("%d",&stud[i].rollno);

printf("\nTotal mark:");

scanf("%d",&stud[i].totalmark);

printf("\nDate of birth (Format:01 06 2010):");

scanf("%d%d%d",&stud[i].d.day,&stud[i].d.month,&stud[i].d.year);

}

printf("\nSTUDENTS

DETAILS:\n"); for(i=0;i<n;i++)

{

printf("\nRoll number:%d\n",stud[i].rollno);

printf("Name:%s\n",stud[i].name);

printf("Total mark:%d\n",stud[i].totalmark);

printf("Date of birth : %d / %d / %d \n\n",

stud[i].d.day,stud[i].d.month,stud[i].d.year);

}

getch();

}

OUTPUT

Enter total number of students 2

Enter details of 1 student

Name: karthik

Roll number:12

Total mark:588

Date of birth (Format:01 06 2010):11 12 1997

Enter details of 2 student

Name: sarita

Roll number:18

Total mark:598

Date of birth (Format:01 06 2010):1 2 1997

STUDENTS DETAILS:

Roll number:12

Name: karthik Total

mark: 588

Date of birth : 11 / 12 / 1997

Roll number:18

Name: sarita

Total mark:598

Date of birth : 1 / 2 / 1997

Union

Union is a user created data type similar to structure but in this case all the members

share a common memory location. The size of the union corresponds to the length of the largest

member. Since the member share a common location they have the same starting address.

The real purpose of unions is to prevent memory fragmentation by arranging for a

standard size for data in the memory. By having a standard data size we can guarantee that any

hole left when dynamically allocated memory is freed will always be reusable by another instance

of the same type of union. This is a natural strategy in system programming where many

instances of different kinds of variables with a related purpose and stored dynamically.

A union is declared in the same way as a structure. The syntax of union declaration is

union union_name

{

type element 1;

type element 2;

……………..

type element n;

};

This declares a type template. Variables are then declared

as: union union_name x,y,z;

For example, the following code declares a union data type called Student and a union

variable called stud:

union student

{

int rollno;

float totalmark;

};

union student stud;

It is possible to combine the declaration of union combination with that of the union

variables, as shown below.

union union_name

{

type element 1;

type element 2;

……………..

type element n;

}var1,var2,…,varn;

The following single declaration is equivalent to the two declaration presented in the

previous example.

union student

{

int rollno;

float totalmark;

}x,y,z;

Exercise: Compare structure and Union

The difference between structure and union is,

Structure Union

The amount of memory required to store a

structure variable is the sum of the size of all

the members.

The amount of memory required is always

equal to that required by its largest member.

Each member have their own memory space. One block is used by all the member of the

union.

Keyword struct defines a structure Keyword union defines a union.

struct s_tag

{

int ival;

float fval;

char *cptr;

}s;

union u_tag

{

int ival;

float fval;

char *cptr;

}u;

Within a structure all members gets memory

allocated; therefore any member can be

retrieved at any time.

While retrieving data from a union the type that

is being retrieved must be the type most

recently stored. It is the programmer's

responsibility to keep track of which type is

currently stored in a union; the results are

implementation-dependent if something is

stored as one type and extracted as another.

One or more members of a structure can be

initialized at once.

A union may only be initialized with a value

of the type of its first member; thus union u

described above (during example declaration)

can only be initialized with an integer value.

Structure:

#include<stdio.h>

#include<conio.h

> void main()

{

struct testing

{

int a;

char b;

float c;

}var

; clrscr();

printf(“\nsizeof(var) is %d”,sizeof(var));

printf(“\nsizeof(var.a) is

%d”,sizeof(var.a)); printf(“\nsizeof(var.b) is

%d”,sizeof(var.b)); printf(“\nsizeof(var.c) is

%d”,sizeof(var.c));

UNION:

#include<stdio.h>

#include<conio.h

var.a=10;

printf(“\nvalue of var.a is %d”,var.a);

var.b=’b’;

printf(“\nvalue of var.b is %c”,var.b);

var.c=15.55;

printf(“\nvalue of var.c is %f”,var.c);

printf(“\nvalue of var.a is %d”,var.a);

printf(“\nvalue of var.b is %c”,var.b);

printf(“\nvalue of var.c is %f”,var.c);

OUTPUT

sizeof(var) is 7

sizeof(var.a) is 2

sizeof(var.b) is 1

sizeof(var.c) is 4

value of var.a is 10

value of var.b is b

value of var.c is 15.550000

value of var.a is 10

>

v

o

i

d

m

a

i

n

(

)

{

union

testing

{

i

n

t

a

;

c

h

a

r

b

;

f

l

o

a

t

c

;

}

v

a

r

;

c

l

r

s

c

r

(

)

;

printf(“\nsizeof(var) is

%d”,sizeof(var));

p

r

intf(“\nsizeof(var.a) is

%d”,sizeof(var.a));

printf(“\nsizeof(var.b) is

%d”,sizeof(var.b));

printf(“\nsizeof(var.c) is

%d”,sizeof(var.c));

File Handling in C

• A file is a collection of related data that a computer treats as a single unit.

• Computers store files to secondary storage so that the contents of files remain intact

when a computer turns off.

• When a computer reads a file, it copies the file from the storage device to memory; when it

var.a=10;

printf(“\nvalue of var.a is %d”,var.a);

var.b=’b’;

printf(“\nvalue of var.b is %c”,var.b);

var.c=15.55;

printf(“\nvalue of var.a is %f”,var.c);

printf(“\nvalue of var.a is %d”,var.a);

printf(“\nvalue of var.b is %c”,var.b);

printf(“\nvalue of var.c is %f”,var.c);

getch();

}

OUTPUT

sizeof(var) is 4

sizeof(var.a) is 2

sizeof(var.b) is 1

sizeof(var.c) is 4

writes to a file, it transfers data from memory to the storage device.

• C uses a structure called FILE (defined in stdio.h) to store the attributes of a file.

Steps in Processing a File

1. Create the stream via a pointer variable using the FILE structure: FILE *p;

2. Open the file, associating the stream name with the file name.

3. Read or write the data.

4. Close the file.

Five major operations can be performed on file are:

1. Creation of a new file.

2. Opening an existing file.

3. Reading data from a file.

4. Writing data in a file.

5. Closing a file

To handling files in C,
file

input/output functions available in the stdio library are:

Function Uses/Purpose

fopen Opens a file.

fclose

Closes a file.

https://www.w3schools.in/c-tutorial/file-handling/fopen/
https://www.w3schools.in/c-tutorial/file-handling/fclose/

getc

Reads a character from a file

putc

Writes a character to a file

https://www.w3schools.in/c-tutorial/file-handling/getc/
https://www.w3schools.in/c-tutorial/file-handling/putc/

getw Read integer

putw

Write an integer

fprintf

Prints formatted output to a file

fscanf

Reads formatted input from a file

fgets

Read string of characters from a file

fputs

Write string of characters to file

feof

Detects end-of-file marker in a file

The basic format of fopen is:

Syntax:

Parameters

• filePath: The first argument is a pointer to a string containing the name of the file to be

opened.

• mode: The second argument is an access mode.

Mode

FILE *fopen(const char * filePath, const char * mode);

C access mode can be one of the following values: fopen()

https://www.w3schools.in/c-tutorial/file-handling/getw/
https://www.w3schools.in/c-tutorial/file-handling/putw/
https://www.w3schools.in/c-tutorial/file-handling/fprintf/
https://www.w3schools.in/c-tutorial/file-handling/fscanf/
https://www.w3schools.in/c-tutorial/file-handling/fgets/
https://www.w3schools.in/c-tutorial/file-handling/fputs/
https://www.w3schools.in/c-tutorial/file-handling/feof/

Description

r Opens an existing text file.

w

Opens a text file for writing if the file doesn't exist then a new file is created.

a

Opens a text file for appending(writing at the end of existing file) and create the file if it does not exist.

FILE stream pointer

Return Value

C fopen function returns

success.

Example

:

in case of a failure and returns a on

#include<stdio.h>

int main()

{

FILE *fp;

fp = fopen("fileName.txt","w");

return 0;

}

NULL

r+ Opens a text file for reading and writing.

w+

Open for reading and writing and create the file if it does not exist. If the file exists then make it blank.

a+

Open for reading and appending and create the file if it does not exist. The reading will start from the beginning

writing can only be appended.

w

• The above example will create a file called fileName.txt.

• The means that the file is being opened for writing, and if the file does not exist then

the new file will be created.

The basic format of fclose is:

Syntax:

Return Value

int fclose(FILE * stream);

fclose

w

C fclose returns

Example:

in case of failure and returns 0 on success.

• The above example will create a file called fileName.txt.

• The means that the file is being opened for writing, and if the file does not exist then

the new file will be created.

• Th

e

function writes text to the file.

• The function closes the file and releases the memory stream.

function is C library function, and it's used to read a character from a file that

has been

#include<stdio.h>

int main()

{

FILE *fp;

fp = fopen("fileName.txt","w");

fprintf(fp, "%s", "Sample Texts");

fclose(fp);

return 0;

}

EOF

getc()

Sample Texts fprintf

fopen() opened in read mode by function.

Return Value

• getc() function returns next requested object from the stream on success.

• Character values are returned as an unsigned char cast to an int or EOF on end of file or

error.

• The function feof() and ferror() to distinguish between end-of-file and error must be used.

int getc(FILE * stream);

Example:

#include<stdio.h>

int main()

{

FILE *fp = fopen("fileName.txt", "r");

int ch = getc(fp);

while (ch != EOF)

{

/* To display the contents of the file on the screen */ putchar(ch);

ch = getc(fp);

}

if (feof(fp))

printf("\n Reached the end of file.");

else

printf("\n Something gone wrong.");

fclose(fp);

getchar();

return 0;

}

putc() function is C library function, and it's used to write a character to the file. This function is

used for writing a single character in a stream along with that it moves forward the indicator's

position.

Example:

C getw function is used to read an integer from a file that has been opened in read mode. It is a

file handling function, which is used for reading integer values.

int getw(FILE * stream);

C putw function is used to write an integer to the file.

Syntax:

int main (void)

{

FILE * fileName;

char ch;

fileName = fopen("anything.txt","wt");

for (ch = 'D' ; ch <= 'S' ; ch++) {

putc (ch , fileName);

}

fclose (fileName);

return 0;

}

int putw(int c, FILE * stream);

int putc(int c, FILE * stream);

Example:

int main (void)

{

FILE *fileName;

C fprintf function pass arguments according to the specified format to the file indicated by

the stream. This function is implemented in file related programs for writing formatted data in

any file.

Syntax:

int i=2, j=3, k=4, n;

fileName = fopen ("anything.c","w");

putw(i, fileName);

int fprintf(FILE *stream, const char *format, ...)

putw(j, fileName);

putw(k, fileName);

fclose(fileName);

fileName = fopen ("test.c","r");

while(getw(fileName)! = EOF)

{

n= getw(fileName);

printf("Value is %d \t: ", n);

}

fclose(fp);

return 0;

}

Example:

int main (void)

C fscanf function reads formatted input from a file. This function is implemented in file

related programs for reading formatted data from any file that is specified in the program.

Syntax:

Its return the number of variables that are assigned values, or EOF if no assignments could

be made.

Example:

{

FILE *fileName;

fileName = fopen("anything.txt","r");

fprintf(fileName, "%s %s %d", "Welcome", "to", 2018); fclose(fileName);

return(0);

}

int fscanf(FILE *stream, const char *format, ...)

int main()

{

char str1[10], str2[10];

int yr;

FILE* fileName;

fileName = fopen("anything.txt", "w+");

fputs("Welcome to", fileName);

rewind(fileName);

fscanf(fileName, "%s %s %d", str1, str2, &yr);

printf(" \n");

printf("1st word %s \t", str1);

C fgets function is implemented in file related programs for reading strings from any

particular file. It gets the strings 1 line each time.

Syntax:

Example:

• On success, the function returns the same str parameter

• C fgets function returns a NULL pointer in case of a failure.

C fputs function is implemented in file related programs for writing string to any particular

file.

printf("2nd word %s \t", str2);

printf("Year-Name %d \t", yr);

fclose(fileName);

return (0);

}

char *fgets(char *str, int n, FILE *stream)

void main(void)

{

FILE* fileName;

char ch[100];

fileName = fopen("anything.txt", "r");

printf("%s", fgets(ch, 50, fileName));

fclose(fileName);

}

 Syntax:

 Example:

• int fputs(const char *str, FILE *stream)

• #include<stdio.h>

 In this function returns non-negative value, otherwise returns EOF on error.

C feof function is used to determine if the end of the file (stream), specified has been reached or

not. This function keeps on searching the end of file (eof) in your file program.

Syntax:

Here is a program showing the use of feof().

Example:

int main()

{

FILE *fp;

fputs("This is a sample text file.", fp);

fputs("This file contains some sample text data.", fp);

fclose(fp);

int feof(FILE *stream)

#include<stdio.h>

int main()

{

FILE *filee =

NULL; char buf[50];

filee = fopen("infor.txt","r");

if(filee)

{

while(!feof(filee))

{

fgets(buf, sizeof(buf), filee);

puts(buf);

Output:

C feof function returns true in case end of file is reached,

otherwise it's return false. Explanation:

1. It first tries to open a text file infor.txt as read-only mode.

2. Then as the file gets opened successfully to read, it initiates the while loop.

3. The iteration continues until all the statement/lines of your text

file get to read as well as displayed.

Lastly, you have to close the file.

}

fclose(filee);

}

return 0;

}

	Unit – V
	Structure
	Example:
	Accessing structure Variable
	Example:
	Initializing Structure Members
	Example:
	Output
	Array of structures:
	Program to demonstrate use of array of structure
	Structure as structure member (Embedded structure):
	OUTPUT
	Exercise: Compare structure and Union
	Structure:
	UNION:
	function is C library function, and it's used to write a character to the file. This function is used for writing a single character in a stream along with that it moves forward the indicator's position.
	C getw function is used to read an integer from a file that has been opened in read mode. It is a file handling function, which is used for reading integer values.
	C putw function is used to write an integer to the file.

